All About Multiple Sclerosis

More MS news articles for March 2004

A Doctor's Painstaking Search for MS Clues

March 20, 2004
Amanda Gardner

When Dr. Moses Rodriguez started researching multiple sclerosis two decades ago, the prevailing wisdom was that repairing the nervous system was impossible.

Now he knows that's not true.

Rodriguez, a professor of neurology and immunology at the Mayo Clinic in Rochester, Minn., was intrigued by MS patients who had devastating attacks and then, one year later, seemed to be dramatically better.

"We hadn't done anything," he says. "The body had been able to do something to induce repair."

In the intervening years, Rodriguez has been able to identify a whole series of antibodies that were able to perform dramatic repairs in animal tests of MS. "We have been able to show definitely that we can get very significant repair of the nervous system," he says.

These antibodies are part of the body's natural defense system. "They are present in all of us and are playing a role in repairing our bodies," Rodriguez explains. In people with MS, however, they are present at only low levels.

"It's very exciting, because theoretically it should be very nontoxic," Rodriguez says. "You're giving back. It's a normal, very natural, reparative kind of approach. Most approaches in MS have been destructive. People are trying to get rid of T cells or immunosuppress people or take away things."

Now Rodriguez and his colleagues have identified antibodies in humans and have unraveled the complete molecular sequence, meaning they can manufacture them. In fact, Rodriguez is planning clinical trials in collaboration with Acorda Therapeutics. "The company is committed to taking this forward; I think it's going to happen relatively soon," Rodriguez says.

Rodriguez has departed from conventional MS research in another way as well. Traditionally, experts have focused on the myelin sheath, which insulates the axon or nerve cell. "What we're finding is the real problem is in the neuron or axon, not the myelin," Rodriguez says. "We may be concentrating on the wrong thing. Once we get over that big step, we may be able to find more effective therapies."

Without myelin, the axon is like "a tree without bark," Rodriguez explains. "All of a sudden, anything can get into it and the axon is going to die. One of the things you've got to do is protect those axons from dying."

Killer T-cells, which are part of the body's immune system and the most common T cells in the brains of MS patients, appear to be killing the axons. When Rodriguez and his colleagues deleted killer T-cells in animal models, the animals showed no neurological problems.

"That shows that killer T cells are the bad guys," he says. "If we can get rid of killer T-cells, we can do a lot."

Copyright © 2004, HealthDay